3GPP TSG SA WG5 (Telecom Management) Meeting #115
S5-175220
16-20 October 2017, Busan, Korea
revision of S5A-17xabc
Source:
Ericsson
Title:
Discussion paper presenting considerations and alternatives
Document for:
Approval, Information, Discussion

Agenda Item:
6.5.5
1
Decision/action requested

The group to discuss and propose further actions
2
References

 [1]
3GPP TR 32.866 Study on RESTful HTTP-based Solution Set (SS)
3
Rationale

This discussion paper presents discussion and alternatives to various parts of the TR. The information presented is informative and the group may decide if further proposals are needed to be captured in the study arising from this discussion paper.
The structure of the discussion is as follows; there are 7 sections called observations and each observation includes sub-section “text and reference in TR” that is a copy of the relevant text from the TR and a sub-section “consideration” which is short discussion including alternatives where applicable.
1
Observation 1

1.1
Text and reference in TR

“7.2.2
Richardson Maturity Model

There are four levels in the Richardson Maturity Model [b6].
1.2
Consideration

It is proposed to reach at least RMM level 2 with level 3 where appropriate. Appropriate may mean functional area such as fault, configuration and performance management. The ambition level should be level 3 allthough it is accepted that it is not possible to reach that level today or tomorrow, therefore it should be taking into consideration that a level 2 implementation tomorrow should be allowed to evolve to level 3 the day after tomorrow.
2
Observation 2

2.1
Text and reference in TR

 7.4.4.2
Specification language

To provide a machine-readable version of an interface specification, 3GPP publishes a Solution Set document which formally describes the schema for each interface. A similar formal schema will be needed for each RESTful interface.

For JSON, there are two parts to this formal description

- The behaviour of the API may be described using the Swagger language, as defined in the OpenAPI specification [v].

- The format of the JSON document may be described by a JSON Schema, as defined in the OpenAPI specification [v].

Swagger descriptions and JSON Schemas may be expressed as either JSON documents or as YAML documents. JSON and YAML are fully interchangeable. It is recommended that YAML should be used in 3GPP documentation because YAML is more human-friendly. Using a human-friendly format may help to reduce errors while writing specifications.
2.2
Consideration

Swagger is an open source software framework backed by a large ecosystem of tools that helps developers design, build, document, and consume RESTful Web services. While most users identify Swagger by the Swagger UI tool, the Swagger toolset includes support for automated documentation, code generation, and test case generation. The Swagger specification language renamed to OpenAPI.
An OpenAPI document that conforms to the OpenAPI Specification is itself a JSON object, which may be represented either in JSON or YAML format.
In order to preserve the ability to round-trip between YAML and JSON formats, YAML version 1.2 is RECOMMENDED along with some additional constraints:

· Tags MUST be limited to those allowed by the JSON Schema ruleset.

· Keys used in YAML maps MUST be limited to a scalar string, as defined by the YAML Failsafe schema ruleset.

While APIs may be defined by OpenAPI documents in either YAML or JSON format, the API request and response bodies and other content are not required to be JSON or YAML.
The use of OpenAPI with YAML puts limitations JSON schemas as YAML does nto support the full JSON specifications and therefore puts limitations on the API designer and the implementation of an API. The use of OpenAPI with RAML which fully supports the JSON specifications will not pose such limitation.

3
Observation 3

3.1
Test and reference in TR

7.5.5
Design pattern for UPDATE operations (partial update)

HTTP PATCH is used when only a part of the resource shall be replaced. The changes to be applied to the target resource are described in the request message body. RFC 7396 [b2] describes a simple method for JSON to describe these modifications.

The query part of the URI can be used for scoping and filtering multiple resources.

3.2
Consideration

While an example is provided of the JSON Merge Patch approach (RFC 7396), none is priovided for JSON Patch (RFC 6902) which is a different approach.
As both approaches may be useful in different scenarios, it is recommended to support both approaches.

4
Observation 4

4.1
Text and reference in TR

7.5.11
Design pattern for TASK operations

Due to their complexity, some operations cannot be mapped easily into CRUD operations. For these operations task resources are introduced. Reasons for escaping to task operations include

· Editor’s note: Reasons are to be added

Task resources are created below a parent resource to which the task is related to. The tasks are invoked by sending a HTTP POST request to the resource. Input parameters can be specified in the message body of the POST request. Output parameters can be returned in the message body of the POST response. The name of the resource should be a verb describing the invoked action

…/foo/doSomething

Task resources are created automatically by the HTTP server once the parent resource is created. The HTTP client does not need to create them.

4.2
Consideration

The use of TASK operations breaks the RMM level 2 rules. In our experience, we have never encountered a use case where there is a need for this design pattern. There has always been more RESTful solution available for any interaction on Itf-N or similar that reaches at least RMM level 2 if not level 3 by adoption of an appropriate resource model.
For example, a "conversions" endpoint where a "conversion" resource including data to be converted may be POSTed.
This may return immediately with the created "conversion" including the converted data.
In this case the "conversion" resource can be temporary.

Alternative for long running conversions a link to the conversion resource may be created which can be polled for status updates and deleted on completion and retrieval of the converted data.

In pseudocode, this could look something like the following:

POST /conversions/ HTTP/1.1

Host: example.org

Content-Type: application/json

{

 "inputData": { … }

}

The conversion output can be included immediately in the response in the case of short running conversions:

HTTP/1.1 201 Created

Content-Type: application/json

{

 "id": "1",

 "status": "complete",

 "outputData": { … },

 "_links": {

 "self": { "href": "/conversions/1" },

 }

}

Alternatively, the service can respond with just a status and a link to self which may be polled until the data output is ready.

HTTP/1.1 201 Created

Content-Type: application/json

{

 "id": "1",

 "status": "processing",

 "_links": {

 "self": { "href": "/conversions/1" },

 }

}

This solution may be further enhanced with hypermedia if the input and/or output are persisted.

GET /conversions/1 HTTP/1.1

Host: example.org

Accept: application/json

Content-Type: application/json

{

 "id": "1",

 "status": "complete",

 "_links": {

 "self": { "href": "/conversions/1" },

 "inputData": { "href": "/conversions/1/input" },

 "outputData": { "href": "/conversions/1/output" }

 }

}

These may then be embedded in the response using the embed query param.

GET /conversions/1:embed=inputData,outputData HTTP/1.1

Host: example.org

Accept: application/json

Content-Type: application/json

{

 "id": "1",

 "status": "complete",

 "_embedded": {

 "inputData": { … },

 "outputData": { … }

 }

 "_links": {

 "self": { "href": "/conversions/1" },

 "inputData": { "href": "/conversions/1/input" },

 "outputData": { "href": "/conversions/1/output" }

 }

}

5
Observation 5

5.1
Text and reference in TR

7.5.12
Design pattern for asynchronous operations

Some operations cannot be mapped to synchronous HTTP requests and responses. For these operations, various options exist to implement asynchronous operations over a HTTP interface.

Option 1: Client requests a notification to a callback URI

In this option, the client submits a callback URI while requesting the asynchronous operation. This URI is called when the asynchronous operation is complete.
To invoke an operation:

The client sends a GET request to an operation-style URI, for example “/network/utranCell/Cell13784/upgrade”. The request contains a link to a callback URI so that the client may be notified when the request is completed. If the request is accepted, the server responds with status 200 (OK). If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing operation:

Cancellation is not possible.

To check the status of an operation:

Status check is not possible.

Advantages:

This option is very simple to implement.

Disadvantages:

This option does not properly use the RESTful nature of HTTP, it only uses HTTP as a carrier protocol. The Solution Set must describe proprietary handling of request state transitions and error handling.

The client and server must agree in advance which operations will be asynchronous.

It is not possible for the client to check the status of the request or to cancel the request.

Maturity level:

This option is at Richardson Maturity Level 0. The action is described in the URI, not in the HTTP verb. The status of the request is not reported to the client.

Option 2: Client creates a resource to represent the operation

In this option, the client creates and manages a resource to represent the asynchronous operation. This resource is used to represent the actions on the operation and the error conditions of the operation.
To invoke an operation:

The client POSTs a request to an operation-style URI, for example “/network/utranCell/Cell13784/upgrade”. Optionally, the request may contain a link to a callback URI so that the client may be notified when the request is completed. If the request is accepted, the server responds with status 201 (created) and a link to a status URI (for example “Location: /network/utranCell/Cell13784/upgrade/75CD01A7110C”). If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing operation:

The client invokes a DELETE operation on the status URI. If the cancellation is successful, the server responds with response code 204 (success). If it is not possible to cancel the ongoing operation, the server responds with response code 405 (method not allowed).

To check the status of an operation:

The client invokes a GET operation on the status URI. The server responds with response code 200 (OK) and the body of the response describes the current status of the operation (for example ongoing/success/failed).

If the operation has finished, the server may remove the status URI after a suitable timeout. Any requests to the removed URI should result in response code 410 (gone).

Advantages:

This option is compatible with existing 3GPP SA5 Information Models.

Disadvantages:

This option does not properly use the RESTful nature of HTTP, it only uses HTTP as a carrier protocol. The Solution Set must describe proprietary handling of request state transitions and error handling.

The client and server must agree in advance which operations will be asynchronous.

Every operation is expressed as a POST. This causes misuse of HTTP verbs in some cases, for example an asynchronous request to delete a resource must be encapsulated within a POST request.

Maturity level:

This option is at Richardson Maturity Level 1. The action is described in the URI, not in the HTTP verb. The status of the request is described in the HTTP body, not in the HTTP status code.

Option 3: Server creates a resource to represent the operation
In this option, the server creates and manages a resource to represent the asynchronous operation. HTTP verbs are used to represent the actions on the operation and HTTP status codes are used to report the error conditions of the operation.
To invoke an operation:

The client sends a request (POST/PUT/DELETE) containing “Expect: 200-ok/201-created/202-accepted” in the request header.

If the server is able to processes the request synchronously, the server responds with code 200 (OK) or 201 (created).

If the server is not able to processes the request synchronously, the server responds with status 202 (accepted) and a link to a status URI (for example “Location: /request/9EB50DADABDF”).

If the request is not accepted, the server responds with status 4xx or 5xx.

To cancel an ongoing asynchronous operation:

The client invokes a DELETE operation on the status URI. If the cancellation is successful, the server responds with response code 204 (success). If it is not possible to cancel the ongoing operation, the server responds with response code 405 (method not allowed).

To check the status of an asynchronous operation:

The client invokes a GET operation on the status URI. If the operation is still ongoing, the server responds with response code 200 (OK). If the operation is finished and an object exists as a result of the operation, the server responds with response code 303 (see other link) and the URI of the object. If the operation is finished and no object exists as a result of the operation, the server responds with response code 410 (gone).

If the operation has finished, the server may remove the status URI after a suitable timeout. Any requests to the removed URI should result in response code 410 (gone).

Advantages:

This option is compatible with cloud-style interfaces. Standard HTTP verbs and HTTP error codes are used properly. Because the behaviour is consistent, code may be reused or automatically generated.

Disadvantages:

This option is very different to the existing 3GPP SA5 solution sets. A typical 3GPP SA5 Information Model defines the behaviour of an asynchronous operation, and this behaviour may differ for various managed objects. In this option, the behaviour of the asynchronous operation is always the same, which may cause a mismatch between the Information Model and the Solution Set.

Maturity level:

This option is at Richardson Maturity Level 2. The lifecycle of the request is controlled by HTTP verbs and is reported by the HTTP status codes.

5.2
Consideration

Considering that SA5 recomments RMM level 2 that excludes option 1 (RMM level 0). Option 2 (RMM level 1).
In Option 2 if the example uses “upgrade” as a noun and not a verb, per definition of RMM this example is level 2. It is not clear what (from RMM point of view) the difference is between option 2 and option 3 in this case.

More details in the study are required to address the disadvantages of option 3.
6
Observation 6

6.1
Text and reference in TR

7.5.13
Design pattern for scoping and filtering

The hierarchical path component in the URI serves to identify a resource, called the base resource. The scope defines the resources below the base resource or at the same level as the base resource. A subset of the scoped resources can be selected by applying one or multiple filtering criteria. The scoped resources that match the filter criteria are those on which the HTTP operation is being applied to.

The query component in the URI is used for scoping and filtering. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

In RFC3986 [a3] the query component is defined as

query = *(pchar / "/" / "?")

A filter language is not defined. In ETSI GS NFV SOL 003 the following filter language is specified

simpleFilterExpr := <attrName>["."<attrName>]*"."<op>"="<value>

filterExpr := "?"<simpleFilterExpr>["&"<simpleFilterExpr>]*
op := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |
 "ncont"
attrName := string
with

	Operator <op>
	Meaning

	<attrName>.eq=<value>[,<value>]*
	Attribute equal to one of the values in the list

	<attrName>.neq=<value>[,<value>]*
	Attribute not equal to any of the values in the list

	<attrName>.gt=<value>
	Attribute greater than <value>

	<attrName>.gte=<value>
	Attribute greater than or equal to <value>

	<attrName>.lt=<value>
	Attribute less than <value>

	<attrName>.lte=<value>
	Attribute less than or equal to <value>

	<attrName>.cont=<value>[,<value>]*
	Attribute contains (at least) one of the values in the list

	<attrName>.ncont=<value>[,<value>]*
	Attribute does not contain any of the values in the list

Editor’s note: It is ffs if this filter language shall be adopted.
6.2
Consideration

Alternative query languages are available, one such example is FIQL (https://tools.ietf.org/html/draft-nottingham-atompub-fiql-00), Feed Item Query Language. The simplicity of FIQL and its capability to express complex queries in a compact and HTTP URI-friendly way makes it a good candidate for becoming a generic query language for searching REST endpoints. It also specifies a mechanism to allow feeds to indicate what types of queries are supported.
7
Observation 7

7.1
Text and reference in TR

7.6.3
Alarm IRP

7.6.3.1
Introduction

The Information Service of the Alarm IRP is specified in TS 32.111-2 [a7]. This clause will detail some possible mappings based on the Richardson Maturity Model.

7.2
Consideration

Considering that SA5 recomments RMM level 2 that excludes 7.6.3.2 (RMM level 0) and 7.6.3.3 (RMM level 1). More details in the study are required to show what RMM level 3 solution would look like.
4
Detailed proposal

(For pseudo CR, include the complete clause(s) or subclause(s) of the latest draft TS/TR to be modified, with clear clause and sub-clause headings included and all modifications shown with revision marks, unambiguously showing where the changes shall be made or inserted in the draft TS/TR. It is not sufficient to just state, for example, “add the following text to the draft TS/TR…”.)

